
Human Interface Devices: Host Application

USB Complete 375

13

Human Interface
Devices:
Host Application
Chapter 10 showed how to obtain a handle to communicate with a device.
This chapter shows how Visual Basic .NET and Visual C++ .NET applica-
tions can use the handle to communicate with a HID-class device.

HID API Functions
The Windows API includes functions that applications can use to learn
about a HID’s reports and to send and receive report data. The Windows
DDK documents the functions.

The HID API considers each report item to be either a button or value. As
defined by the HID API, a button is a control or data item that has a dis-
crete, binary value, such as ON (1) or OFF (0). Buttons include items repre-

Chapter 13

376 USB Complete

sented by unique Usage IDs in the Buttons, Keyboard, and LED Usage
pages. A value usage, or value, can have any of a range of values. Any report
item that isn’t a button is a value.

Windows 98 Gold was the first to include the HID API. Windows 98 SE,
Windows 2000, and Windows Me support additional HID functions. The
API was expanded again for Windows XP. The tables in this chapter note
the functions that aren’t available in all Windows editions.

Requesting Information about the HID
Table 13-1 lists API functions that request information about a HID and its
reports. HidD_GetPreparsedData retrieves a pointer to a buffer that con-
tains information about the HID’s reports. HidP_GetCaps uses the pointer
to retrieve a HIDP_CAPS structure that specifies what report types a device
supports and provides information about the type of information in the
reports. For example, the structure includes the number of
HIDP_BUTTON_CAPS structures that have information about a button
or set of buttons. The application can then use the HidP_GetButtonCaps
function to retrieve these structures

The API also includes several functions for retrieving strings. Table 13-2 lists
these.

Sending and Receiving Reports
Table 13-3 lists functions that applications can use to send and receive
reports.

Windows’ HID driver causes the host controller to request Input reports
periodically. The driver stores received reports in a buffer. ReadFile retrieves
one or more reports from the buffer. If the buffer is empty, ReadFile waits
for a report to arrive. ReadFile thus does not cause the device to send a
report but just reads reports that the driver has requested.

WriteFile sends an Output report to the HID. WriteFile uses an interrupt
transfer if the HID has an interrupt OUT endpoint and the operating sys-
tem is later than Windows 98 Gold. Otherwise, WriteFile uses a control

Human Interface Devices: Host Application

USB Complete 377

Table 13-1: Applications can use these API functions to obtain information about
a HID and its reports.
API Function Purpose

HidD_FreePreparsedData Free resources used by HidD_GetPreparsedData.

HidD_GetPhysicalDescriptor1 Retrieve a physical descriptor.

HidD_GetPreparsedData Return a handle to a buffer with information about the
HID’s reports.

HidP_GetButtonCaps Retrieve an array with information about the buttons in a
top-level collection for a specified report type.

HidP_GetCaps Retrieve a structure describing a HID’s reports.

HidP_GetExtendedAttributes1 Retrieve a structure with information about Global items
the HID parser didn’t recognize.

HidP_GetLinkCollectionNodes Retrieve a structure with information about collections
within a top-level collection.

HidP_GetSpecificButtonCaps Like HidP_GetButtonCaps but can specify a Usage Page,
Usage ID, and link collection.

HidP_GetSpecificValueCaps Like HidP_GetValueCaps but can specify a Usage Page,
Usage ID, and link collection.

HidP_GetValueCaps Retrieve an array with information about the values in a
top-level collection for a specified report type.

HidP_IsSameUsageAndPage Determine if two Usages (Usage Page and Usage ID) are
equal.

HidP_MaxDataListLength Retrieve the maximum number of HIDP_DATA structures
that HidP_GetData can return for a HID report type and
top-level collection.

HidP_MaxUsageListLength Retrieve the maximum number of Usage IDs that
HidP_GetUsages can return for a report type and top-level
collection.

HidP_
TranslateUsagesToI8042
ScanCodes

Map Usages on the HID_USAGE_PAGE_KEYBOARD
Usage Page to PS/2 scan codes.

HidP_
UsageAndPageListDifference

Retrieve the differences between two arrays of Usages
(Usage Page and Usage ID).

HidP_UsageListDifference Retrieve the differences between two arrays of Usage IDs.

1Not supported under Windows 98 Gold.

Chapter 13

378 USB Complete

transfer with a Set_Report request. If using interrupt transfers, WriteFile
will wait if the device NAKs. If using control transfers, WriteFile returns
with an error code on failure or a timeout.

HidD_GetInputReport requests an Input report using a control transfer
with a Get_Report request, bypassing the Input report buffer.
HidD_SetOutputReport provides a way to send an Output report using a
control transfer with a Set_Report request, even if the HID and operating
system support using interrupt transfers.

For Feature reports, HidD_GetFeature retrieves a report using a control
transfer and Get_Report request and HidD_SetFeature sends a report using
a control transfer and Set_Report request. Note that HidD_SetFeature is
not the same as the standard USB request Set_Feature!

All of the functions that use control transfers return with an error code on
failure or a timeout.

Providing and Using Report Data
After retrieving a report, an application can use the raw data directly from
the buffer or use API functions to extract button or value data. In a similar
way, an application can write data to be sent directly into a report’s buffer or
use API functions to place the data into a buffer for sending.

Table 13-4 lists API functions that extract information in received reports
and store information in reports to be sent. For example, an application can

Table 13-2: Applications can use these API functions to retrieve strings from a
HID.
API Function Purpose

HidD_GetIndexedString1 Retrieve a specified string.

HidD_GetManufacturerString1 Retrieve a manufacturer string

HidD_GetProductString1 Retrieve a product string.

HidD_GetSerialNumberString1 Retrieve a serial-number string.

1Not supported under Windows 98 Gold.

Human Interface Devices: Host Application

USB Complete 379

find out what buttons have been pressed by calling HidP_GetButtons,
which returns a buffer containing the Usage IDs of all buttons that belong
to a specified Usage Page and are set to ON. An application can set and clear
buttons in a report to be sent by calling HidP_SetButtons and
HidP_UnsetButtons. In a similar way, applications can retrieve and set val-
ues in a report using HidP_GetUsageValue and Hid_Set_UsageValue.

Managing HID Communications
Table 13-5 lists API functions that applications can use in managing HID
communications.

Chapter 10 showed how to use HidD_GetHidGuid to obtain the device
interface GUID for the HID class. HidD_SetNumInputBuffers enables an
application to change the size of the HID driver’s buffer for Input reports. A
larger buffer can be helpful if the application might be too busy at times to
read reports before the buffer overflows. The value set is the number of
reports the buffer will hold. HidD_FlushQueue deletes any Input reports in
the buffer.

Identifying a Device
After obtaining a handle to a HID as described in Chapter 10, an applica-
tion can use the HID API functions to find out whether the HID is one that

Table 13-3: Applications can use these API functions to send and receive
reports.
API Function Purpose

HidD_GetFeature Read a Feature report.

HidD_GetInputReport1 Read an Input report using a control transfer.

HidD_SetFeature Send a Feature report.

HidD_SetOutputReport1 Send an Output report using a control transfer.

ReadFile Read an Input report obtained via an interrupt transfer.

WriteFile Send an Output report. Use an interrupt transfer if possible,
otherwise use a control transfer.

1Requires Windows XP or later.

Chapter 13

380 USB Complete

the application wants to communicate with. The application can identify a
device by its Vendor ID and Product ID, or by searching for a device with a
specific Usage, such as a game controller.

Reading the Vendor and Product IDs
For vendor-specific devices that don’t have standard Usages, searching for a
device with a specific Vendor ID and Product ID is often useful. The API

Table 13-4: Applications can use these API functions to extract information in
retrieved reports and store information in reports to be sent.
API Function Purpose

HidP_GetButtons Same as HidP_GetUsages.

HidP_GetButtonsEx Same as HidP_GetUsagesEx.

HidP_GetData Retrieve an array of structures, with each structure identify-
ing either the data index and state of a button control that is
set to ON (1) or the data index and data for a value control.

HidP_GetScaledUsageValue Retrieve a signed and scaled value from a report.

HidP_GetUsages Retrieve a list of all of the buttons that are on a specified
Usage Page and are set to ON (1).

HidP_GetUsagesEx Retrieve a list of all of the buttons that are set to ON (1).

HidP_GetUsageValue Retrieve the data for a specified value.

HidP_GetUsageValueArray Retrieve data for an array of values with the same Usage
ID.

HidP_InitializeReportForID1 Set all buttons to OFF (0) and set all values to their null val-
ues if defined and otherwise to zero.

HidP_SetButtons Same as HidP_SetUsages.

HidP_SetData Sets the states of buttons and data in values in a report.

HidP_SetScaledUsageValue Convert a signed and scaled physical number to a Usage’s
logical value and set the value in a report.

HidP_SetUsages Set one or more buttons in a report to ON (1).

HidP_SetUsageValue Set the data for a specified value.

HidP_SetUsageValueArray Set the data for an array of values with the same Usage ID.

HidP_UnsetButtons Same as HidP_UnsetUsages.

HidP_UnsetUsages Set one or more buttons in a report to OFF (0).
1Not supported under Windows 98 Gold.

Human Interface Devices: Host Application

USB Complete 381

function HidD_GetAttributes retrieves a pointer to a structure containing
the Vendor ID, Product ID, and device release number.

Visual C++

The HIDD_ATTRIBUTES structure contains information about the
device:

typedef struct _HIDD_ATTRIBUTES {
 ULONG Size;
 USHORT VendorID;
 USHORT ProductID;
 USHORT VersionNumber;
} HIDD_ATTRIBUTES, *PHIDD_ATTRIBUTES;

This is the function’s declaration:

BOOLEAN
 HidD_GetAttributes(
 IN HANDLE HidDeviceObject,
 OUT PHIDD_ATTRIBUTES Attributes
);

Table 13-5: Applications can use these API functions in managing HID
communications.
API Function Purpose

HidD_FlushQueue Delete all Input reports in the buffer.

HidD_GetHidGuid Retrieve the device interface GUID for HID-class devices.

HidD_GetNumInputBuffers1 Retrieve the number of reports the Input report buffer can
hold.

HidD_SetNumInputBuffers1 Set the number of reports the Input report buffer can hold.

HidRegisterMinidriver HID mini-drivers call this function during initialization to
register with the HID class driver.

1Not supported under Windows 98 Gold.

Chapter 13

382 USB Complete

This is the code to retrieve the structure:

BOOLEAN Result;
HIDD_ATTRIBUTES Attributes;

// Set the Size member to the number of bytes
// in the structure.
Attributes.Size = sizeof(Attributes);
Result = HidD_GetAttributes
 (DeviceHandle,
 &Attributes);

The application can then compare the Vendor ID and Product ID to the
desired values:

const unsigned int VendorID = 0x0925;
const unsigned int ProductID = 0x1234;

if (Attributes.VendorID == VendorID) {
 if (Attributes.ProductID == ProductID) {
 // The Vendor ID and Product ID match.
 }
 else {
 // The Product ID doesn't match.
 // Close the handle.
 }
}
else {
 // The Vendor ID doesn't match.
 // Close the handle.
}

Visual Basic

The HIDD_ATTRIBUTES structure contains information about the
device:

<StructLayout(LayoutKind.Sequential)> _
Public Structure HIDD_ATTRIBUTES
 Dim Size As Integer
 Dim VendorID As Short
 Dim ProductID As Short
 Dim VersionNumber As Short
End Structure

Human Interface Devices: Host Application

USB Complete 383

This is the declaration for the function:

<DllImport("hid.dll")> _
Function HidD_GetAttributes _
 (ByVal HidDeviceObject As Integer, _
 ByRef Attributes As HIDD_ATTRIBUTES) _
 As Boolean
End Function

This is the code to retrieve the structure:

Dim DeviceAttributes As HIDD_ATTRIBUTES
Dim MyVendorID as Short
Dim MyProductID as Short
Dim Result as BOOLEAN

' Set the Size property of DeviceAttributes to the
' number of bytes in the structure.

DeviceAttributes.Size =
 Marshal.SizeOf(myHID.DeviceAttributes)

Result = HidD_GetAttributes _
 (DeviceHandle, _
 DeviceAttributes)

The application can then compare the Vendor ID and Product ID to the
desired values:

MyVendorID = &h0925
MyProductID = &h1234

If (DeviceAttributes.VendorID = MyVendorID) And _
 (DeviceAttributes.ProductID = MyProductID) Then

 Debug.WriteLine("My device detected")

Else

 Debug.WriteLine("Not my device")
 ' Close the handle.

Chapter 13

384 USB Complete

Details

DeviceHandle is a handle returned by CreateFile. Before calling
HidD_GetAttributes, the Size member of the DeviceAttributes must be set
to the structure’s size. If the function returns True, the DeviceAttributes
structure filled without error. The application can then compare the
retrieved values with the desired Vendor ID and Product ID and device
release number.

If the attributes don’t indicate the desired device, the application should use
the CloseHandle API function to close the handle to the interface. The
application can then move on to test the next HID in the device informa-
tion set retrieved with SetupDiGetClassDevs as described in Chapter 10.

Getting a Pointer to a Buffer with Device Capabilities
Another way to find out more about a device is to examine its capabilities.
You can do this for a device whose Vendor ID and Product ID matched the
values you were looking for, or you can examine the capabilities for an
unknown device.

The first task is to call HidD_GetPreparsedData to get a pointer to a buffer
with information about the device’s capabilities.

Visual C++

This is the function’s declaration:

BOOLEAN
 HidD_GetPreparsedData(
 IN HANDLE HidDeviceObject,
 OUT PHIDP_PREPARSED_DATA *PreparsedData
);

This is the code to call the function:

PHIDP_PREPARSED_DATA PreparsedData;

HidD_GetPreparsedData
 (DeviceHandle,
 &PreparsedData);

Human Interface Devices: Host Application

USB Complete 385

Visual Basic

 This is the function’s declaration:

<DllImport("hid.dll")> _
Function HidD_GetPreparsedData _
 (ByVal HidDeviceObject As Integer, _
 ByRef PreparsedData As IntPtr) _
 As Boolean
End Function

This is the code to call the function:

Dim PreparsedData As IntPtr

HidD_GetPreparsedData _
 (DeviceHandle, _
 PreparsedData)

Details

DeviceHandle is the handle returned by CreateFile. PreparsedData is a
pointer to the buffer containing the data. The application doesn’t need to
access the data in the buffer directly. The code just needs to pass the pointer
to another API function.

When finished using the PreparsedData buffer, the application should free
system resources by calling HidD_FreePreparsedData as described later in
this chapter.

Getting the Device’s Capabilities
The HidP_GetCaps function returns a pointer to a structure that contains
information about the device’s capabilities. The structure contains the
HID’s Usage Pages, Usages, report lengths, and the number of button-capa-
bilities structures, value-capabilities structures, and data indexes that iden-
tify specific controls and data items in Input, Output, and Feature reports.
An application can use the capabilities information to identify a particular
HID and learn about its reports and report data. Not every item in the
structure applies to all devices.

Chapter 13

386 USB Complete

Visual C++

This is the declaration for the HIDP_CAPS structure:

typedef struct _HIDP_CAPS
{
 USAGE Usage;
 USAGE UsagePage;
 USHORT InputReportByteLength;
 USHORT OutputReportByteLength;
 USHORT FeatureReportByteLength;
 USHORT Reserved[17];

 USHORT NumberLinkCollectionNodes;

 USHORT NumberInputButtonCaps;
 USHORT NumberInputValueCaps;
 USHORT NumberInputDataIndices;

 USHORT NumberOutputButtonCaps;
 USHORT NumberOutputValueCaps;
 USHORT NumberOutputDataIndices;

 USHORT NumberFeatureButtonCaps;
 USHORT NumberFeatureValueCaps;
 USHORT NumberFeatureDataIndices;
} HIDP_CAPS, *PHIDP_CAPS;

This is the function’s declaration:

NTSTATUS
 HidP_GetCaps(
 IN PHIDP_PREPARSED_DATA PreparsedData,
 OUT PHIDP_CAPS Capabilities
);

This is the code to call the function:

HIDP_CAPS Capabilities;

HidP_GetCaps
 (PreparsedData,
 &Capabilities);

Human Interface Devices: Host Application

USB Complete 387

Visual Basic

This is the declaration for the HIDP_CAPS structure:

<StructLayout(LayoutKind.Sequential)> _
Public Structure HIDP_CAPS
 Dim Usage As Short
 Dim UsagePage As Short
 Dim InputReportByteLength As Short
 Dim OutputReportByteLength As Short
 Dim FeatureReportByteLength As Short
 <MarshalAs _
 (UnmanagedType.ByValArray, _
 SizeConst:=17)> _
 Dim Reserved() As Short
 Dim NumberLinkCollectionNodes As Short
 Dim NumberInputButtonCaps As Short
 Dim NumberInputValueCaps As Short
 Dim NumberInputDataIndices As Short
 Dim NumberOutputButtonCaps As Short
 Dim NumberOutputValueCaps As Short
 Dim NumberOutputDataIndices As Short
 Dim NumberFeatureButtonCaps As Short
 Dim NumberFeatureValueCaps As Short
 Dim NumberFeatureDataIndices As Short
End Structure

This is the declaration for the function:

<DllImport("hid.dll")> _
Function HidP_GetCaps _
 (ByVal PreparsedData As IntPtr, _
 ByRef Capabilities As HIDP_CAPS) _
 As Boolean
End Function

This is the code to call the function:

Dim Capabilities As HIDP_CAPS

HidP_GetCaps _
 (PreparsedData, _
 Capabilities)

Chapter 13

388 USB Complete

Details

PreparsedData is the pointer returned by HidD_GetPreparsedData. When
the function returns, the application can examine and use whatever values
are of interest in the Capabilities structure. For example, if you’re looking for
a joystick, you can look for a Usage Page of 01h and a Usage of 04h.

The report lengths are useful for setting buffer sizes for sending and receiv-
ing reports.

Getting the Capabilities of the Buttons and Values
The device capabilities aren’t the only thing that an application can retrieve
from a HID. The application can also get the capabilities of each button and
value in a report.

HidP_GetValueCaps returns a pointer to an array of structures containing
information about the values in a report. The NumberInputValueCaps
property of the HIDP_CAPS structure is the number of structures returned
by HidP_GetValueCaps.

The items in the structures include many values obtained from the HID’s
report descriptor, as described in Chapter 12. The items include the Report
ID, whether a value is absolute or relative, whether a value has a null state,
and logical and physical minimums and maximums. A LinkCollection iden-
tifier distinguishes between controls with the same Usage and Usage Page in
the same collection.

In a similar way, the HidP_GetButtonCaps function can retrieve informa-
tion about a report’s buttons. The information is stored in a
HidP_ButtonCaps structure.

An application that has no use for this information doesn’t have to retrieve
it.

Sending and Receiving Reports
 All of the previous API functions are concerned with finding and learning
about a device that matches what the application is looking for. On finding

Human Interface Devices: Host Application

USB Complete 389

a device of interest, the application and device are ready to exchange data in
reports.

Table 13-3 listed the six API functions for exchanging reports. Table 13-6
shows that the transfer type the host uses varies with the report type and
may also vary depending on the operating system and available endpoints.

Sending an Output Report to the Device
On obtaining a handle and learning the number of bytes in the report, an
application can send an Output report to the HID. The application copies
the data to send to a buffer and calls WriteFile. As Chapter 11 explained, the
type of transfer the HID driver uses to send the Output report depends on
the Windows edition and whether the HID interface has an interrupt OUT
endpoint. The application doesn’t have to know or care which transfer type
the driver uses.

Table 13-6: The transfer type used to send or receive a report can vary
with the API function, operating system edition, and available endpoints.
Report Type API Function Transfer Type

Input ReadFile Interrupt IN

HidD_GetInputReport Control with Get_Report request

Output WriteFile Interrupt OUT if possible;
otherwise Control with Set_Report
request

HidD_SetOutputReport Control with Set_Report request

Feature IN HidD_GetFeature Control with Get_Report request

Feature OUT HidD_SetFeature Control with Set_Report request

Chapter 13

390 USB Complete

Visual C++

This is the function’s declaration:

BOOL WriteFile(
 HANDLE hFile,
 LPCVOID lpBuffer,
 DWORD nNumberOfBytesToWrite,
 LPDWORD lpNumberOfBytesWritten,
 LPOVERLAPPED lpOverlapped
);

This the code to call the function:

BOOLEAN Result;

// The report data can reside in a byte array.
// The array size should equal at least the report
// length in bytes + 1.

CHAR OutputReport[3];

DWORD BytesWritten;

// The first byte in the buffer containing the report
// is the Report ID.

OutputReport[0]=0;

// Store data to send in OutputReport[] in the
// bytes following the Report ID.
// Example:

OutputReport[1]=79;
OutputReport[2]=75;

Result = WriteFile
 (DeviceHandle,
 OutputReport,
 Capabilities.OutputReportByteLength,
 &BytesWritten,
 NULL);

Human Interface Devices: Host Application

USB Complete 391

Visual Basic

This is the function’s declaration:

<DllImport("kernel32.dll")> Function WriteFile _
 (ByVal hFile As Integer, _
 ByRef lpBuffer As Byte, _
 ByVal nNumberOfBytesToWrite As Integer, _
 ByRef lpNumberOfBytesWritten As Integer, _
 ByVal lpOverlapped As Integer) _
 As Boolean
End Function

This is the code to send an Output report to the HID:

Dim NumberOfBytesWritten As Integer
Dim OutputReportBuffer() As Byte
Dim ReportID as Integer
Dim Result as Boolean

ReDim OutputReportBuffer _
 (Capabilities.OutputReportByteLength - 1)

ReportID = 0
OutputReportBuffer(0) = ReportID

' Store data to send in OutputReportBuffer()
' in the bytes following the report ID.
' Example:

OutputReportBuffer(1) = 79
OutputReportBuffer(2) = 75

Result = WriteFile _
 (DeviceHandle, _
 OutputReportBuffer(0), _
 UBound(OutputReportBuffer) + 1, _
 NumberOfBytesWritten, _
 0)

Details

The hFile parameter is the handle returned by CreateFile. The lpBuffer
parameter points to the buffer that contains the report data. The
nNumberOfBytesToWrite parameter specifies how many bytes to write and

Chapter 13

392 USB Complete

should equal the OutputReportByteLength property of the HIDP_CAPS
structure retrieved with HidP_GetCaps. This value equals the report size in
bytes plus one byte for the Report ID, which is the first byte in the buffer.
The buffer must be large enough to hold the Report ID and report data.

The lpOverlapped parameter is unused in this example, but WriteFile can
use overlapped I/O as described in the following section on ReadFile. Over-
lapped I/O can prevent the application’s thread from hanging if the HID’s
interrupt OUT endpoint NAKs endlessly. In normal operation, the end-
point should accept received data with little delay.

On success, the function returns True with NumberOfBytesWritten con-
taining the number of bytes the function successfully wrote to the HID.

If the interface supports only the default Report ID of 0, the Report ID
doesn’t transmit on the bus, but the Report ID must always be present in the
buffer the application passes to WriteFile.

When sending a report to an interrupt endpoint, WriteFile returns on suc-
cess or an error. If the device NAKs the report data, WriteFile waits until the
endpoint ACKs the data. When sending a report via the control endpoint,
WriteFile returns on success, an error, or a timeout (if the endpoint contin-
ues to NAK the report data).

Probably the most common error returned by WriteFile in HID communi-
cations is CRC Error. This error indicates that the host controller attempted
to send the report, but the device didn’t respond as expected. In spite of the
error message, the problem isn’t likely to be due to an error detected in a
CRC calculation. The error is more likely to be due to a firmware problem
that is keeping the endpoint from accepting the report data. If WriteFile
doesn’t return at all, the interrupt OUT endpoint probably has not been
configured to accept the report data.

Reading an Input Report from the Device
The complement to WriteFile is ReadFile. When the application has a han-
dle to the HID interface and knows the number of bytes in the device’s

Human Interface Devices: Host Application

USB Complete 393

Input report, the application can use ReadFile to read an Input report from
a device.

To read a report, the application declares a buffer to hold the data and calls
ReadFile. The buffer size should equal at least the size reported in the
InputReportByteLength property of the HIDP_CAPS structure returned by
HidP_GetCaps.

When called with non-overlapped I/O, ReadFile is a blocking call. If an
application calls ReadFile when the HID’s read buffer is empty, the applica-
tion’s thread waits until either a report is available, the user closes the appli-
cation from the Task Manager, or the user removes the device from the bus.
There are several approaches to keeping an application from hanging as it
waits for a report. The device can continuously send reports. The applica-
tion can attempt to read a report only after requesting one using an Output
or Feature report. The application can use ReadFile with overlapped I/O
and a timeout. The ReadFiles can also take place in a separate thread.

To ensure that the device always has data to send, you can write the firm-
ware so that the IN endpoint is always enabled and ready to respond to a
request for data. If there is no new data to send, the device can send the
same data as last time, or the device can return a vendor-defined code that
indicates there is nothing new to report. Or before each ReadFile, the appli-
cation can send a report that prompts the firmware to provide a report to
send to the host.

In an overlapped read, ReadFile returns immediately even if there is no
report available, and the application can call WaitForSingleObject to
retrieve the report. The advantage of WaitForSingleObject is the ability to
set a timeout. If the data hasn’t arrived when the timeout period has elapsed,
the function returns a code that indicates a timeout and the application can
try again or use the CancelIo function to cancel the read operation. This
approach works well if reports are normally available without delay, but the
application needs to regain control if for some reason there is no report.

To prevent long delays waiting for WaitForSingleObject to return, an appli-
cation can set the timeout to zero and call the function repeatedly in a loop
or periodically, triggered by a timer. The function returns immediately if no

Chapter 13

394 USB Complete

report is available, and the application can perform other tasks in the loop or
between timeouts.

Another way to improve the performance of an application that is reading
Input reports is to do the ReadFiles in a separate thread that notifies the
main thread when a report is available. A .NET application can define an
asynchronous delegate and use the BeginInvoke method to call a method
that performs the ReadFiles in a different thread. BeginInvoke can specify a
callback routine that executes in the application’s main thread when the
method that has called ReadFile returns, enabling the application to retrieve
the returned report.

Visual C++

In addition to CreateFile, introduced in Chapter 10, an overlapped ReadFile
uses these functions:

BOOL CancelIo
 (HANDLE hFile);

HANDLE CreateEvent
 (LPSECURITY_ATTRIBUTES lpEventAttributes,
 BOOL bManualReset,
 BOOL bInitialState,
 LPCTSTR lpName);

BOOL ReadFile
 (HANDLE hFile,
 LPVOID lpBuffer,
 DWORD nNumberOfBytesToRead,
 LPDWORD lpNumberOfBytesRead,
 LPOVERLAPPED lpOverlapped);

DWORD WaitForSingleObject
 (HANDLE hHandle,
 DWORD dwMilliseconds);

Human Interface Devices: Host Application

USB Complete 395

This is the code for doing an overlapped ReadFile:

CHAR InputReportBuffer[3];
DWORD BytesRead;
DWORD Result;
HANDLE hEventObject;
OVERLAPPED HIDOverlapped;

hEventObject = CreateEvent
 ((LPSECURITY_ATTRIBUTES)NULL,
 FALSE,
 TRUE,
 "");

HIDOverlapped.hEvent = hEventObject;
HIDOverlapped.Offset = 0;
HIDOverlapped.OffsetHigh = 0;

// Set the first byte in the buffer to the Report ID.
InputReportBuffer[0] = 0;

ReadHandle=CreateFile
 (DetailData->DevicePath,
 GENERIC_READ|GENERIC_WRITE,
 FILE_SHARE_READ|FILE_SHARE_WRITE,
 (LPSECURITY_ATTRIBUTES)NULL,
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 NULL);

Result = ReadFile
 (ReadHandle,
 InputReportBuffer,
 Capabilities.InputReportByteLength,
 &BytesRead,
 (LPOVERLAPPED) &HIDOverlapped);

Result = WaitForSingleObject
 (hEventObject,
 3000);

Chapter 13

396 USB Complete

switch (Result)
{
 case WAIT_OBJECT_0: {

 // Success;
 // Use the report data;

 break;
 }
 case WAIT_TIMEOUT: {

 // Timeout error;
 //Cancel the read operation.

 CancelIo(ReadHandle);
 break;
 }
 default: {

 // Undefined error;
 //Cancel the read operation.

 CancelIo(ReadHandle);
 break;
 }
 }

Visual Basic

These are the constants and structures used in an overlapped ReadFile:

Public Const FILE_FLAG_OVERLAPPED As Integer _
 = &H40000000
Public Const FILE_SHARE_READ As Short = &H1S
Public Const FILE_SHARE_WRITE As Short = &H2S
Public Const GENERIC_READ As Integer = &H80000000
Public Const GENERIC_WRITE As Integer = &H40000000
Public Const OPEN_EXISTING As Short = 3
Public Const WAIT_OBJECT_0 As Short = 0
Public Const WAIT_TIMEOUT As Integer = &H102

Human Interface Devices: Host Application

USB Complete 397

<StructLayout(LayoutKind.Sequential)> _
Public Structure OVERLAPPED
 Dim Internal As Integer
 Dim InternalHigh As Integer
 Dim Offset As Integer
 Dim OffsetHigh As Integer
 Dim hEvent As Integer
End Structure

In addition to CreateFile, introduced in Chapter 10, an overlapped ReadFile
uses these functions:

<DllImport("kernel32.dll")> _
Function CancelIo _
 (ByVal hFile As Integer) _
 As Integer
End Function

<DllImport("kernel32.dll", CharSet:=CharSet.Auto)> _
Function CreateEvent _
 (ByRef SecurityAttributes _
 As SECURITY_ATTRIBUTES, _
 ByVal bManualReset As Integer, _
 ByVal bInitialState As Integer, _
 ByVal lpName As String) _
 As Integer
End Function

<DllImport("kernel32.dll")> _
Function ReadFile _
 (ByVal hFile As Integer, _
 ByRef lpBuffer As Byte, _
 ByVal nNumberOfBytesToRead As Integer, _
 ByRef lpNumberOfBytesRead As Integer, _
 ByRef lpOverlapped As OVERLAPPED) _
 As Integer
End Function

<DllImport("kernel32.dll")> _
Function WaitForSingleObject _
 (ByVal hHandle As Integer, _
 ByVal dwMilliseconds As Integer) _
 As Integer
End Function

Chapter 13

398 USB Complete

This the code to do an overlapped ReadFile:

Dim EventObject As Integer
Dim HIDOverlapped As OVERLAPPED
Dim InputReportBuffer() As Byte
Dim NumberOfBytesRead As Integer
Dim Result As Integer
Dim Security As SECURITY_ATTRIBUTES
Dim Success As Boolean

Security.lpSecurityDescriptor = 0
Security.bInheritHandle = CInt(True)
Security.nLength = Len(Security)

EventObject = CreateEvent _
 (Security,
 CInt(False),
 CInt(True),
 "")

HIDOverlapped.Offset = 0
HIDOverlapped.OffsetHigh = 0
HIDOverlapped.hEvent = EventObject

' Set the first byte in the report buffer to the
' report ID.

InputReportBuffer(0) = 0;

ReadHandle = CreateFile _
 (DevicePathName, _
 GENERIC_READ Or GENERIC_WRITE, _
 FILE_SHARE_READ Or FILE_SHARE_WRITE, _
 Security, _
 OPEN_EXISTING, _
 FILE_FLAG_OVERLAPPPED, _
 0)

ReDim InputReportBuffer _
 (Capabilities.InputReportByteLength - 1)

Human Interface Devices: Host Application

USB Complete 399

Result = ReadFile _
 (ReadHandle, _
 InputReportBuffer(0), _
 Capabilities.InputReportByteLength, _
 NumberOfBytesRead, _
 HIDOverlapped)

Result = WaitForSingleObject _
 (EventObject, _
 3000)

Select Case Result
 Case WAIT_OBJECT_0

 ' Success
 ' Use the report data.

 Case WAIT_TIMEOUT

 ' Timeout error.
 ' Cancel the Read operation.

 CancelIo(ReadHandle)

 Case Else

 ' Undefined error.
 ' Cancel the Read operation.

 CancelIo(ReadHandle)

 End Select

Details

Before calling ReadFile for the first time, the application calls CreateEvent
to create an event object that is set to the signaled state when the ReadFile
operation completes. Overlapped I/O requires a handle obtained from a call
to CreateFile with the dwFlagsAndAttributes parameter set to
FILE_FLAG_OVERLAPPPED.

Chapter 13

400 USB Complete

InputReportBuffer is a byte array that must be large enough to hold the
report ID and the largest Input report defined in the HID’s report descrip-
tor.

The call to ReadFile passes the handle returned by CreateFile, the address of
the first element in the InputReportBuffer array, the report’s length from the
Capabilities structure returned by HidP_GetCaps, an Integer to hold the
number of bytes read, and an overlapped structure whose hEvent parameter
is a handle to the event object. A call to ReadFile returns immediately. The
application then calls WaitForSingleObject, which returns when a report has
been read or on a timeout. The parameters passed to WaitForSingleObject
are the event object and a timeout value in milliseconds.

If WaitForSingleObject returns success (WAIT_OBJECT_0), the first byte
in InputReportBuffer is the report ID, and the following bytes are the report
data read from the device. If the interface supports only the default report
ID of zero, the report ID doesn’t transmit on the bus but is always present in
the buffer returned by ReadFile.

A call to ReadFile doesn’t initiate traffic on the bus. The call just retrieves a
report that the host previously requested in one of its periodic interrupt IN
transfers. If there are no unread reports, ReadFile waits for a report to arrive.
The host begins requesting reports when the HID driver is loaded during
enumeration. The driver stores the reports in a ring buffer. When the buffer
is full and a new report arrives, the oldest report is overwritten. A call to
ReadFile reads the oldest report in the buffer. Under Windows 98 SE and
later, an application can set the buffer size with the
HidD_SetNumInputBuffers function. Different Windows editions have
different default buffer sizes, ranging from 2 under Windows 98 Gold to 32
under Windows XP.

Each handle with READ access to the HID has its own Input buffer, so
multiple applications can read the same reports.

If the application doesn’t request reports as frequently as they’re sent, some
will be lost. One way to keep from losing reports is to increase the size of the
report buffer passed to ReadFile. If multiple reports are available, ReadFile
returns as many as will fit in the buffer. If you need to be absolutely sure not

Human Interface Devices: Host Application

USB Complete 401

to lose a report, use Feature reports instead. Also see the tips in Chapter 3
about performing time-critical transfers.

The Idle rate introduced in Chapter 11 determines whether or not a device
sends a report if the data hasn’t changed since the last transfer. During enu-
meration, Windows’ HID driver attempts to set the Idle rate to 0, which
means that the HID won’t send a report unless the report data has changed.
There is no API call that enables applications to change the Idle rate. To pre-
vent setting an Idle rate of zero, the HID can return a STALL to the
Set_Idle request to inform the host the request isn’t supported. Not all
device controllers have hardware support for the Idle rate, though support
can be implemented with a timer in firmware.

Whether or not Set_Idle is supported, the firmware can be programmed to
send each report only once. After sending a report, the firmware can config-
ure the endpoint to return NAK in response to IN token packets. When the
device has new data to send, the firmware can configure the endpoint to
send a report. Otherwise, the device will continue to send the same data
every time the host polls the endpoint, and the application is likely to read
the same report multiple times.

If ReadFile isn’t returning, these are possible reasons:

• The HID’s interrupt IN endpoint is NAKing the IN token packets
because the endpoint hasn’t been configured to send the report data.
Remember that the endpoint’s hardware interrupt typically triggers after
data has been sent, so the device must prepare to send the initial report
before the first interrupt.

• The number of bytes the endpoint is sending doesn’t equal the number
of bytes in the report (for the default report ID) or the number of bytes
in the report + 1 (for other report IDs).

• The endpoint is sending report ID zero with the report, or the endpoint
isn’t sending a report ID greater than zero with the report.

Chapter 13

402 USB Complete

Writing a Feature Report to the Device
To send a Feature report to a device, use the HidD_SetFeature function.
The function sends a Set_Report request and a report in a control transfer.

Visual C++

This is the function’s declaration:

BOOLEAN
 HidD_SetFeature(
 IN HANDLE HidDeviceObject,
 IN PVOID ReportBuffer,
 IN ULONG ReportBufferLength
);

This is the code to call the function:

CHAR OutFeatureReportBuffer[3];
BOOLEAN Result;

// The first byte in the report buffer is the
// report ID:

OutFeatureReportBuffer[0]=0;

// Store data to send in FeatureReport[] in the
// bytes following the Report ID.
// Example:

OutFeatureReportBuffer[1]=79;
OutFeatureReportBuffer[2]=75;

Result = HidD_SetFeature
 (DeviceHandle,
 OutFeatureReportBuffer,
 Capabilities.FeatureReportByteLength);

Human Interface Devices: Host Application

USB Complete 403

Visual Basic

This is the function’s declaration:

<DllImport("hid.dll")> _
Function HidD_SetFeature _
 (ByVal HidDeviceObject As Integer, _
 ByRef lpReportBuffer As Byte, _
 ByVal ReportBufferLength As Integer) _
 As Boolean
End Function

This is the code to call the function:

Dim OutFeatureReportBuffer _
 (Capabilities.FeatureReportByteLength - 1) as Byte
Dim Success As Boolean

'The first byte in the report buffer is the report ID:

OutFeatureReportBuffer(0) = 0

' Example report data following the report ID:

OutFeatureReportBuffer(1) = 55
OutFeatureReportBuffer(2) = 41

Success = HidD_SetFeature _
 (DeviceHandle, _
 OutFeatureReportBuffer(0), _
 Capabilities.FeatureReportByteLength)

Details

A byte array holds the report to send. The first byte in the array is the report
ID. The length of the Feature report plus one byte for the report ID is in the
HIDP_CAPS structure retrieved by HidP_GetCaps. HidD_SetFeature
requires a handle to the HID, the address of the first element in the byte
array, and length of the byte array.

The function returns True on success. If the device continues to NAK the
report data, the function times out and returns.

Chapter 13

404 USB Complete

A call to HidD_SetOutputReport works much the same way to send an
Output report using a control transfer. The function passes a handle to the
HID, a pointer to a byte array containing an Output report, and the num-
ber of bytes in the report plus one byte for the report ID.

Reading a Feature Report from a Device
To read a Feature report from a device, use the HidD_GetFeature API func-
tion. The function sends a Get_Feature request in a control transfer. The
device returns the report in the Data stage.

Visual C++

This is the function’s declaration:

BOOLEAN
 HidD_GetFeature(
 IN HANDLE HidDeviceObject,
 OUT PVOID ReportBuffer,
 IN ULONG ReportBufferLength
);

This is the code to call the function:

BOOLEAN Result;
CHAR InFeatureReportBuffer[3];

// The first byte in the report buffer is the report
// ID:

InFeatureReportBuffer[0]=0;

Result = HidD_GetFeature
 (DeviceHandle,
 InFeatureReportBuffer,
 Capabilities.FeatureReportByteLength)

Human Interface Devices: Host Application

USB Complete 405

Visual Basic

This is the function’s declaration:

 <DllImport("hid.dll")> Function HidD_GetFeature _
 (ByVal HidDeviceObject As Integer, _
 ByRef lpReportBuffer As Byte, _
 ByVal ReportBufferLength As Integer) _
 As Boolean
 End Function

This is the code to call the function:

Dim InFeatureReportBuffer _
 (Capabilities.FeatureReportByteLength - 1) as Byte
Dim Success As Boolean

'The first byte in the report buffer is the report ID:

InFeatureReportBuffer(0) = 0

Success = HidD_GetFeature _
 (DeviceHandle, _
 InFeatureReportBuffer(0), _
 Capabilities.FeatureReportByteLength)

Details

A byte array holds the retrieved report. The first byte in the array is the
report ID. The length of the Feature report plus one byte for the report ID
is in the HIDP_CAPS structure retrieved by HidP_GetCaps.
HidD_GetFeature requires a handle to the HID, the address of the first ele-
ment in the byte array, and length of the byte array.

The function returns True on success. If the device continues to NAK in the
Data stage of the transfer, the function times out and returns.

A call to HidD_GetInputReport works in much the same way to request an
Input report using a control transfer. The function passes a handle to the
HID, a pointer to a byte array to hold the Input report, and the number of
bytes in the report plus one byte for the report ID.

Chapter 13

406 USB Complete

Closing Communications
When finished communicating with a device, the application should call
CloseHandle to close any handles opened by CreateFile, as described in
Chapter 10. When finished using the PreparsedData buffer returned by
HidD_GetPreparsedData, the application should call
HidD_FreePreparsedData.

Visual C++

This is declaration for HidD_FreePreparsedData:

BOOLEAN
 HidD_FreePreparsedData(
 IN PHIDP_PREPARSED_DATA PreparsedData
);

This is the code to call the function:

HidD_FreePreparsedData(PreparsedData);

Visual Basic

This is the declaration for HidD_FreePreparsedData:

<DllImport("hid.dll")> _
Function HidD_FreePreparsedData _
 (ByRef PreparsedData As IntPtr) _
 As Boolean
End Function

This is the code to call the function:

HidD_FreePreparsedData(PreparsedData)

